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Abstract 

In this paper, we examine the effectiveness of absorbing layers as non-reflecting com- 
putational boundaries for the Euler equations. The absorbing-layer equations are simply 
obtained by splitting the governing equations in the coordinate directions and introducing 
absorption coefficients in each split equation. This methodology is similar to that used by 
Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this 
methodology to three physical problems - shock-vortex interactions, a plane free shear flow 
and an axisymmetric jet - with emphasis on acoustic wave propagation. Our numerical 
results indicate that the use of absorbing layers effectively minimizes numerical reflection in 
all three problems considered. 
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1. Introduction 

The proper treatment of computational boundaries is crucial for any numerical solution to 
a set of partial differential equations which governs fluid motion or wave propagation in a 
medium. Various techniques have been developed to minimize the reflection of out-going 
waves. A review can be found in Givoli (1991). Numerical boundary conditions based on 
the characteristics of the relevant linearized equations and their asymptotic solutions in the 
far field have been widely used. However, such boundary conditions are not satisfactory if 
the outflow is nonlinear or involves multi-directional waves. As a possible remedy, a buffer 
zone abutting the computational boundary, in which the governing equations are modified, 
and whose role is to absorb the incident waves, has been proposed. In this buffer zone, the 
modifications have the effect of either removing or damping reflected waves oriented back 
towards the computational domain. Naturally, the buffer zone solutions themselves need not 
necessarily be physical, and they serve only to prevent contamination of the solution in the 
physical domain of interest by the reflections from the computational boundaries. Various 
types of buffer zone techniques have been used in flow simulations. For example, Colonius 
et al.(1993) used buffer zones in which the solutions were filtered. In a different approach, 
Ta'asan and Nark (1995) modified the governing equations in the buffer zone to change the 
orientation of the characteristics, and make the flow supersonic at the exit plane. Recently, 
Berenger(1994) proposed a very effective Perfectly Matched Layer technique for Maxwell's 
equations. In this approach, the equations governing the so-called matched layer are split 
into subcomponents with damping terms which absorb the incident waves almost perfectly. 
Following Berenger, Hu (1996), developed an analogous technique for the linearized Euler 
equations, and provided analytical results for the case of uniform flow. 

In this paper, we follow the operator splitting principle of Berenger (1994) and Hu (1996) 
for the equations governing what we call the absorbing layers and examine their effectiveness 
in the case of shock-vorticity wave interactions, a plane free-shear layer and an axisymmetric 
jet. The emphasis is on the effectiveness of the the computational boundaries in handling 
wave propagation including sound waves. It is shown that the absorbing layer technique is 
very effective for all three physical problems. The next section describes briefly the numerical 
models used in this study, followed by the section on results and conclusion. 

2. Numerical Models 

2.1 Shock Wave Interactions 

To verify the applicability of the absorbing boundary condition technique to shock-turbulence 
and shock-vortex interaction problems, we choose the numerical model of Erlebacher, Hus- 
saini and Shu (1997). This model solves the fully nonlinear compressible Euler equations 
along with a time evolution equation for the shock motion for the purpose of fitting the 
shock. The outflow boundary conditions which minimizes wave reflection back into the do- 
main of computation are of crucial importance for such problems as they involve long-time 



integrations. The present case focuses on the interaction of a single vorticity wave with 
a shock wave, and the results of course carry over simply to a randomly distributed wave 
system. The two dimensional Euler equations are written as 

dp t    dp ,    dp .du     dv. 
dt       dx       dy dx     dy 

du       du       du        1 dp 
dt       dx       dy        pdx 

dv       dv       dv        dp 
dt       dx       dy        dy 

dp       dp       dp .du     dv. 

m+Ud-x+% = -^dx' + d-y) 

The computational domain has the shock as a boundary on the left and an outflow 
boundary on the right, and is periodic in the other direction. Fourth order Runge-Kutta 
scheme is used for time integration, and the spatial derivatives are discretized by a compact 
6th order scheme. 

In the absorbing layer at the right boundary, the Euler equations are split into a lo- 
cally one-dimensional set with artificial damping terms. Consider the pressure equation, for 
example, in computational space: 

dp dp dp ,dwi     dw2. 
m = -aidx-a2dY-lp(-dx+-W) 

After operator splitting and addition of damping terms, the pressure equation becomes 

dpi dp dw\ _ = -ai__7P__Wl 

dp2 dp dw2 

~dl = ~a2dY ~ 1PW ~ aYP2 

in the absorbing layer. Here, Wi and w2 are velocity components in x- and y-directions, 
ai and a2 are contravariant velocity components (which include the effect of grid motion) 
in computational space, and p = pi + p2. Locally one-dimensional equations for the other 
variables are constructed in a similar manner. The damping factor ax is zero in a layer 
parallel to the X direction; similarly ay is zero in a layer parallel to the Y direction (see 
Figure 1). However, in the corner region both these damping factors are positive. 



2.2 Free Shear Layer 

In order to evaluate the performance of the absorbing-layer technique in the case of inviscid 
instability waves, we solve the linearized Euler equations in a Cartesian (x,y) coordinate 
system.   We study the evolution of a Kelvin-Helmholtz instability wave as it propagates 
downstream and impinges on the absorbing layers. In this case, the «-momentum equation 
reads 

du     -du     dU       1 dp _ 
dt        dx     dy       pdx 

where 

U = | [(Ui + U-i) + (Ui — U2) tanh(j/)]. Absorbing layers are used at the upper, lower and 
right boundaries. Again, the afore-mentioned operator splitting in the absorbing layer leads 
to two x-momentum equations: 

dux rTdu     I dp 
-^ + axux + U— + --£ = 0 
at dx     p dx 

du-i dÜ 

where u = u\ + U2. All other equations are treated similarly. These equations are solved 
by a low-dissipation and low-dispersion Runge-Kutta scheme which is formally fourth order 
accurate (Hu, Hussaini and Manthey, 1996). 

For the nonlinear case one uses again an approximate time independent mean flow to 
split the Euler equations in the absorbing layer. Thus the stream-wise velocity for two 
dimensional flows is decomposed into three components: 

u = Ü + Ui + u2 

where D is the mean velocity as in the linear case. Then the x-momentum equation is written 
as 

du 1 
— + uux + vuy + -px = 0. 
dt p 

This equation is then split into two equations as 

dui 1 L       - r -T— + axui = —px - uux + -Fx + UUX dt p p 

du2 -^— + ayu2 = -vuy 

All other equations in the absorbing layer are similarly derived. 



2.3 Axisymmetric Jet 

The compressible axisymmetric Euler equations for the jet in the weak conservation form 
are : Qt + Fz + Gr = S, where, in the linearized case, 
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In the above equations, p, p, mz, mr, E denote the fluctuating components of pressure, 
density, axial and radial momentum, total energy and H is the mean enthalpy. These equa- 
tions have been linearized around the mean velocity (Ur,Uz) represented by an error function 
that fits experimental measurements. The interior equations are simply split into 

Qt + Fz = 0,      Qt + Gr = S 

and they are modified in the absorbing layer as 

Q\ + Fz = -azQ
l + S\      Q] + Gr = -arQ

2 + S2 

where Q = Q1 + Q2 and S = S1 + S2. (We used S1 = 0 in this study). 

In the nonlinear case, the vectors Q, S, F, and G are defined as follows. 
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We use the fourth-order MacCormack method which has been successfully used in earlier 
studies by Hayder et al. (1996) to solve the linearized Euler equations, and by Hayder et al. 
(1993) and Mankbadi et al. (1994) to solve the Navier Stokes equations. The equations are 
linearized before splitting to obtain the equations for the absorbing layer. Thus, we get 

(Q1 ~ Ql)t + (F - Fo)2 = -az{Q' - Ql) 

(Q2 ~ Ql)t + {G- Go)r = -ar(Q
2 - Ql) + (S- So) 

where the subscript 0 denotes mean quantities, 

3. Results 

In the case of the shock-vorticity wave interaction, we consider specifically the following 
simple wave 

k 
u — U\ = eUilV2^-cos(kxx + kyy - U\t) 

k 
k 

v = -eUx2\/2-j-cos(kxx + kyy - U\t) 
k 

p=p=T=l 

as the upstream condition ahead of the shock. Ui is the upstream mean velocity normal to 
the undisturbed shock, ky = k sin0, kx = k cosO (where k is upstream wavenumber), and 
e = 0.001 measures the intensity of the wave. Our standard interior domain is 7.4 units long 
with 185 uniformly spaced grid points. We used 16 points on the coordinate axis parallel 
to the shock. An absorbing layer abuts the right outflow boundary. We introduce damping 
gradually in order to minimize any reflections due to the discretization in the absorbing layer. 
Unless otherwise mentioned, we use 6 = 30°, K = 2, and 25 grid points (= 1 unit in length) 
in the buffer layer for our computations. A snapshot of pressure in the interior domain at 
t = 20 is presented in Figure 2, which shows how well the out-going waves are absorbed with 
little reflection. To measure the contamination due to reflection, the solutions are compared 
with a reference solution obtained by computing the flow in a much larger domain with the 
same spatial and temporal resolution. We follow this methodology for all problems in this 
study. Figure 3 compares axial variation in pressure for two different size buffers against 
the large domain solution at t = 20. Because of modifications to the governing equations, 
the solution in the buffer layer is irrelevant. The solution in the interior domain for a buffer 
with 25 points is visually indistinguishable from the larger domain solution. In Figure 4, 
we show the rms error (E) in pressure at the ordinate four grid points upstream of the 
interface between the computational domain and the absorbing layer as a function of the 
layer thickness measured in the number of equidistant points. The error E is defined as 

\vr    I V N \rmax\   ' * 

E_m_JzUpr-pY 



where f is the pressure from the reference solution, \pr
max\ is its maximum amplitude and N 

is the number of grid points in the y-direction ( iV=16 in the current context). E measures 
the numerical error in the solution, which includes both direct and induced errors due to the 
interaction of residual reflections from the outflow boundary with the flow and the shock. 
As expected, E decreases as the layer width is increased. In Figures 5 and 6, we show the 
dependence of numerical errors on the angle of incidence (6) and the wave number (k). The 
buffer layer is more effective at lower incidence angle and wavenumbers, although we notice 
some cross-overs in our numerical experiments. At later times, a fraction of the reflections 
from the outflow boundary propagates upstream. These waves can then reflect back and 
forth, and cause what we call induced errors. These sometimes constitute a significant 
portion of the errors shown in Figures 4-6 at later times. 

The results for the free-shear layer are obtained for upper and lower stream mean veloc- 
ities, normalized by the speed of sound, equal to U\ = 0.6 and £/2 = 0.2 respectively. The 
eigenfunctions of the Kelvin-Helmholtz instability wave given by the linear stability theory 
are forced at the inflow, with a maximum amplitude e equal to 0.01. We solve the linearized 
Euler equations and the solution agrees with the linear theory very well in eigenfunction 
and growth rate comparisons. In Figure 7, snapshots of axial velocity (Fig 7a) and pressure 
(Fig 7b) are shown, and in Figure 8 we present the amount of reflection as a function of 
the layer thickness. We observe that for 10 points in the absorbing layer, the amount of 
reflection (measured four grid points away from the buffer layer boundary) is less than .03% 
of the amplitude of the reference pressure fluctuation from the large domain solution. We 
also solve nonlinear Euler equations where the nonlinearity in the flow is significant. The 
inflow excitation amplitude (e) is kept at 0.01, but the interior domain is three times longer. 
All other flow parameters are the same as in the linear case. The error in pressure four grid 
points away from the buffer layer in shown in Figure 9. We needed a larger buffer layer for 
the nonlinear flow simulations. At time equal to 3000, errors with 30 and 50 points in the 
buffer layer were 3.5% and 4% respectively. Intuitively one expects that a buffer layer to be 
more effective if nonlinear effects are smaller. This may be the principal reason for larger 
errors in Figure 9 compared to Figure 8. The effect of nonlinearity is also shown in Figure 
10, where we compare errors for simulations with two different levels of excitation e with a 
buffer of 50 grid points. 

Finally, for the case of the excited axisymmetric jet, we assume the mean Mach number 
to be 0.6. At the inflow, we extrapolated one characteristic variable corresponding to the 
outgoing acoustic wave from the interior and computed the other three characteristic vari- 
ables at time t using [p,u,v,p] = eRe(qetu,t), where q = [ß, u,v,p] is the eigenfunction given 
by the linear stability theory, e = 10-4, OJ = 1.05. A snapshot of pressure is shown in Figure 
11. The rms pressure error (E) in the immediate neighborhood (four points away from the 
buffer layer) of the layer interface is plotted in Figure 12 for time equal to upto 50. This 
error becomes quasi-periodic and the maximum error for 25 grid points in the absorbing 
layer is about 0.015%. Our results for the nonlinear Euler equations are shown in Figure 13. 
The domain size is 10 units long for both linearized and nonlinear Euler simulation of the 



excited jet. The physical parameters are the same for both the linearized and the nonlinear 
Euler equations for the jet calculations. 

4. Conclusions 

In conclusion, we find the performance of the absorbing-layer technique in the cases of 
three physical problems (using three different numerical algorithms) is quite satisfactory. 
This technique offers a viable alternative to the traditional boundary treatments based on 
the linearized characteristics or asymptotic solutions in the far field, and also other types of 
buffer layers. It also promises to be accurate and inexpensive for aeroacoustic computations. 
Further studies are warranted to put this methodology on a firm footing. 
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Figure 7: Velocity and pressure contours in a free shear layer 
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Figure 9: Nonlinear free shear layer 
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Figure 10: Effect of excitation level 
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Figure 11: A snapshot of pressure in the jet 
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Figure 12: Axisymmetric jet (Linearized Euler) 
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